SYNTHESIS AND CHARACTERIZATION OF Ca DOPANT EFFECT ON PbCaTiO₃ POWDERS

Thuzar Hnin¹, Myat Shwe Wah², Myat Thet Mon³ and Zin Min Tun⁴

Abstract

The purpose of this work was to synthesize $Pb_{1-x}Ca_xTiO_3$ (x = 0, 0.1, 0.2, 0.3 wt%) in the form of powder phase by solid state mixed oxide technique and to study the structural properties of this laboratory-made PbCaTiO₃ specimen by a systematic analysis of XRD and SEM for the potential applications in the ferroelectric devices. From XRD results, PbCaTiO₃ powders were significantly formed with tetragonal symmetry. According to SEM results, these PbCaTiO₃ powders were composed of regular and sphere grains with sizes ranging from (278.5 nm-433.75 nm) for various x contents. The PbCaTiO₃ powders were quite suitable for cost effective and uncomplicated trends of ferroelectric materials such as random access memory (RAM).

Keywords: PbCaTiO₃, solid state mixed oxide technique, X-ray diffraction (XRD) and Scanning Electron Microscope (SEM)

Introduction

The science and technology of nanostructured materials is advancing at a very rapid pace. Nowadays, the preparation and functionalization of one-dimensional nanostructured materials has become one of the most important roles of the nanotechnology. Nanotechnology is employed in many different electronics communications, and computing applications, providing smaller, faster, and more portable systems. In general, the size of a nanoparticle spans the range between 1 and 100 nm. Metallic nanoparticles have different physical and chemical properties from bulk metals, properties that might prove attractive in various industrial application are the simplest form of structures with sizes in the nm range. In principle, any collection of atoms bonded together with a structural radius of < 100 nm can be considered a nanoparticle.

Nanoparticles can be in the form of nanocrystals, nanopowders, or nanoclusters, and the particles act as a bridge between bulk materials and atomic or molecular structures. Nanoparticles have a very high surface area to volume ratio, which provides a great driving force for diffusion, particularly at high temperature.

A perovskite is any material with the same type of crystal structure known as the perovskite structures with the oxygen in the face centers. Perovskite-type materials can be represented by their general formula as ABO₃ where, A and B are any two different sized cations and B is the anion bonding them. Most of the perovskites contain oxygen as the anion. Hence, perovskite oxides can be presented by their general formula as ABO₃. Perovskite type oxide materials are important for electronic applications since they exhibit diverse physical properties such as super conductivity, dielectricity, ferroelectricity and magnetism.

¹ Department of Physics, West Yangon University, Myanmar

² Department of Physics, West Yangon University, Myanmar

³ Department of Physics, West Yangon University, Myanmar

⁴ Department of Physics, Sagaing University, Myanmar

Experimental Procedure

Starting Materials

The materials used in this study were Lead Oxide (PbO), Calcium Oxide (CaO) and Titanium Dioxide (TiO2) with different molar ratio of calcium. Figure 1 shows the Starting materials.

Calcium Oxide (CaO)

Titanium Oxide (TiO₂)

Figure 1 Starting materials

Lead Oxide (PbO)

Preparation of Pb_{1-x}Ca_xTiO₃ powders

Calcium (x = 0 g, 0.1 g, 0.2 g, 0.3 g) doped lead titanate PbTiO₃ was successfully prepared by solid state reaction method. Lead oxide (PbO), calcium oxide (CaO) and titanium dioxide (TiO₂) were weighed with digital balance and mixed with desired stoichiometric composition of PbCaTiO₃ powders. The mixture was ground by agate mortar to become a homogeneous mixture. The mixed PbCaTiO₃ powders were calcined at 800 °C for 1.5 h in furnace and reground with agate mortar. The reground PbCaTiO₃ powders passed through 100, 250 and 400 mesh sieves. Finally, homogeneous PbCaTiO₃ powders were obtained. In this section, the structural properties of PbCaTiO₃ powders were characterized by X-ray diffraction method (XRD). Figure 2 showed the block diagram of preparation of PbCaTiO₃ powders with different x contents.

Figure 2 The block diagram of preparation of PCT nanoparticles with different x contents

Results and Discussion

XRD analysis of PbCaTiO₃ powders

X-ray diffraction technique (XRD) is a powerful technique for determination of crystal structure. It provides simple nondestructive information on the nature of intermetallic and crystal phase usually in a very short time. The great deal of the crystallographic information of crystalline PbCaTiO₃ powder has been studied by crystallite size. The XRD patterns of PbCaTiO₃ specimens were perovskite type with tetragonal structure as shown in figure 3 (a-d). There are several diffractions of the standard peaks which were scanned within the diffraction angles range from 10° to 70°. Some extra peaks were formed on all XRD profile and they could not be identified. PCT powders were obtained and examined its phase formation by X-ray diffractometer using Cu-K_a radiation with wavelength of 1.54056 Å. All the peak heights and peak positions were in good agreement with the JCPDS (Join Committee on Powder Diffraction Standards) in 49-0863 > PbCaTiO₃ library file. The average crystallite-sizes were 29.872, 25.253, 24.827, 28.019 nm for various x contents respectively. For the powder, 20, FWHM values and crystallite sizes were given in Table 1-2. The lattice parameter (a, b and c) and lattice distortion (lattice strain) c/a of dominant peaks were described in Table 3. Thus, the PCT powders were successfully obtained by solid state reaction method with tetragonal structure.

The crystallite size was calculated using a well-known Debye Scherrer's formula in equation:

$$G = \frac{0.899 \times \lambda}{FWHM \times \cos \theta}$$
(1)

where,

Table 1 Structural	Properties	of Pb _{1-x} Ca _x	TiO₃ Powders	for $(\mathbf{x} = 0)$	0 , 0.1wt %)
--------------------	------------	--------------------------------------	--------------------------------	------------------------	-------------	---

Sr	(h kl)	2θ	FWH	Observed	Sr	(h kl)	2θ	FWHM	Observed
No.		(deg)	Μ	Crystallite	No.		(deg)	(deg)	Crystallite
		_	(deg)	Size (nm)					Size (nm)
1	(001)	21.205	0.262	33.700	1	(001)	21.252	0.327	27.030
2	(100)	22.581	0.200	44.100	2	(100)	22.571	0.238	37.120
3	(101)	31.300	0.249	35.500	3	(101)	31.309	0.270	32.710
4	(110)	32.269	0.232	38.000	4	(110)	32.311	0.300	29.430
5	(111)	39.039	0.246	35.900	5	(111)	39.056	0.250	35.300
6	(002)	43.447	0.378	23.400	6	(002)	44.037	0.575	15.360
7	(200)	46.347	0.262	33.700	7	(200)	46.343	0.301	29.340
8	(102)	49.490	0.585	15.100	8	(102)	49.926	0.532	16.590
9	(201)	51.594	0.288	30.600	9	(201)	51.587	0.440	20.050
10	(210)	52.223	0.367	24.100	10	(210)	52.219	0.407	21.690
11	(112)	55.239	0.386	22.800	11	(112)	55.415	0.440	20.050
12	(211)	57.053	0.297	29.700	12	(211)	57.100	0.342	25.840
13	(202)	65.487	0.376	23.500	13	(202)	65.653	0.416	21.220
14	(220)	67.675	0.314	28.110	14	(220)	67.669	0.360	24.530
Average crystallite size 29.872		29.872	15	(003)	68.250	0.396	22.290		
					Aver	age crystal	llite size	25.235	

Sr	(h kl)	2θ	FWHM	Observed	Sr	(h kl)	2 θ (deg)	FWHM	Observed
No.		(deg)	(deg)	Crystallite	No.			(deg)	Crystallite
				Size (nm)					Size (nm)
1	(001)	21.252	0.329	26.840	1	(001)	21.408	0.703	12.560
2	(100)	22.558	0.244	36.200	2	(100)	22.561	0.231	38.220
3	(101)	31.97	0.281	31.440	3	(101)	31.272	0.276	31.980
4	(110)	32.227	0.255	34.620	4	(110)	32.210	0.289	30.560
5	(111)	39.026	0.283	31.180	5	(111)	39.080	0.228	38.800
6	(002)	43.944	0.626	14.100	6	(002)	43.880	0.640	13.790
7	(200)	46.325	0.300	29.400	7	(200)	46.293	0.249	35.500
8	(102)	49.915	0.584	15.120	8	(102)	50.039	0.252	35.100
9	(201)	51.548	0.383	23.100	9	(201)	51.534	0.311	28.370
10	(210)	52.203	0.319	27.710	10	(210)	52.125	0.284	31.120
11	(112)	55.441	0.495	17.830	11	(211)	57.013	0.310	28.470
12	(211)	57.054	0.331	26.690	12	(202)	65.760	0.417	21.190
13	(202)	65.443	0.511	17.270	13	(220)	67.552	0.473	18.650
14	(003)	67.149	0.549	16.080		Average crystallite size 28.01			28.019
	Average	e crystallit	e size	24.827					

Table 2 Structural Properties of Pb_{1-x}Ca_xTiO₃ Powders for (x = 0.2, 0.3 wt%)

Table 3 Lattice parameters and c/a ratios of various x contents for Pb1-xCaxTiO3 Powders

w contents (wt0/)	Lattice Par	rameter (Å)	Tetragonality		
x contents (wt %)	а	с	c/a		
$\mathbf{x} = 0$	3.9162	4.1804	1.0674		
x = 0.1	3.9170	4.1602	1.0621		
x = 0.2	3.9218	4.1624	1.0613		
x = 0.3	3.9313	4.1412	1.0534		

Figure 3 (a) The XRD patterns of PbCaTiO₃ powders (x = 0 wt%)

Figure 3 (b) The XRD patterns of PbCaTiO₃ powders (x = 0.1 wt%)

Figure 3 (c) The XRD patterns of PbCaTiO₃ powders (x = 0.2 wt%)

Figure 3 (d) The XRD patterns of PbCaTiO₃ powders (x = 0.3 wt%)

SEM Analysis of Pb_{1-x}Ca_xTiO₃ powders

PbCaTiO₃ powders were obtained successfully by solid state reaction method. The microstructural properties of PbCaTiO₃ powder were observed by using Scanning Electron Microscopy (SEM). Materials evolutions were obtained grain size, surface roughness and pore distribution. Figure 4 (a-d) showed the SEM photographs of PbCaTiO₃ crystalline powder at calcined temperatures 800 °C. As detail analysis of SEM micrograph, it looked crack-free and little dense. Porosity and grain growth pattern were significantly observed on SEM images. These images were smooth and seemed to be front-oriented and the grain distribution was uniform but some of grain sizes were slightly larger. According to SEM results, these PbCaTiO₃ powders were composed of regular and sphere grains with sizes ranging from (278.5 nm-433.75 nm) for various x contents.

(a) (x = 0 wt%, Average grain size = 278.5 nm)

(c) (x = 0.2 wt%, Average grain size = 333 nm)

(b) (x = 0.1 wt%, Average grain size = 324.25 nm)

(d) (x = 0.3 wt%, Average grain size = 433.75 nm)

Figure 4 (a-d) SEM photographs of PbCaTiO₃ crystalline powder (x = 0, 0.1, 0.2 and 0.3 wt%) at calcined temperatures 800 °C

Conclusion

Pb_{1-x}Ca_xTiO₃ powders with different x contents were successfully prepared by solid state reaction method. In the XRD analysis, crystallite sizes of several peaks were 29.872 nm, 25.253 nm, 24.827 nm, 28.019 nm for various x contents respectively. From XRD results, the crystal structure of the prepared PbCaTiO₃ powders was perovskite type with tetragonal symmetry. According to SEM analysis results, PbCaTiO₃ powders were smooth, sphere, and uniform grain with sizes ranging from (278.5 nm-433.75 nm) for various x contents. As these research data, the PbCaTiO₃ powders were quite suitable for cost effective and uncomplicated trends of ferroelectric materials such as random access memory (RAM).

Acknowledgements

We are greatly thankful to Dr. Khin Thidar, Rector, Dr. Thandar and Dr. Thet Tun, Pro-rectors, West Yangon University for their encouragement, Professor Dr Maung Maung Shwe, PhD (YU), Head of Department of Physics, Professor Dr Myat Shwe Wah, PhD (YU), Professor Dr Zay Ya Aung, PhD (YU) and Dr Khin Thitsar Shin, PhD (YU), West Yangon University, for their kind permission to carry out this paper.

References

Anthony R., West (2005), "Solid State Chemistry and its Applications", Wiley and Sons.

Aruta C., et al (2006) Journal of Applied Physics 100 023910

Batista, Carlos A. et al, (2015), Nonadditivity of nanoparticle interactions, Science. 350 (6257)

Baumgarten P.K., (1971) Journal of Colloid and Interface Science 36

Bergshoef M.M. et al, (1999) Journal of Advanced Materials 11 (16) 1362

Barrow G. M. (1962) "Introduction to Molecular Spectroscopy" (Tokyo: McGraw-Hill)

Cernea M., (2004) J Opt and Mater 6 1349-1356

Faraday, M., (1857). "Experimental relations of gold and other metals to light", Phil. Trans.R. Soc. Lond. 147:145-181

Gerand B., et al, Preparative methods in Solid State Chemistry, Academic press.

Iijima K. et al (1986) J Appl Phys 60, 361

Ireme E. A. (2005) Electronic Materials Science (New Jersey: Wiley)

Wenk, H. Rudolf, et al, (2004). Minerals: Their Constitution and Origin. New York, NY: Cambridge University Press. ISBN 978-0-521-52958-7.