RELATIONS BETWEEN CAYLEY GRAPH AND VERTEX-TRANSITIVE GRAPH

Aye Aye Myint^{*}

Abstract

In this paper, we first express basic concepts of graph theory. Then we define vertex-transitive graph and Cayley graph with a given group by using generating set or nongenerating set. Finally, we prove that every Cayley graph is vertex-transitive graph and we also give an example that the converse of this theorem is false.

Keywords: graph, digraph, connected, vertex-transitive, group, order, Cayley graph, Cayley digraph, diameter of a graph.

1. Basic Concepts of Graph Theory

A graph G = (V(G), E(G)) with n vertices and m edges consists of a vertex set $V(G) = \{v_1, v_2, ..., v_n\}$ and an edge set $E(G) = \{e_1, e_2, ..., e_m\}$, where each edge consists of two (possibly equal) vertices called its endpoints. We write uv for an edge e = (u, v). If $uv \in E(G)$, then u and v are adjacent. The ends of an edge are said to be incident with the edge. A loop is an edge whose endpoints are equal. Parallel edges or multiple edges are edges that have the same pair of endpoints. A simple graph is a graph having no loops or multiple edges. A graph is **finite** if its vertex set and edge set are finite. We adopt the convention that every graph mentioned in this paper is finite, unless explicity constructed otherwise. The degree of a vertex v of a graph G is the number of edges of G which are incident with v. A graph is said to be regular (k-regular) if all its vertices have the same degree (k). A three-regular graph is also called a cubic graph. A simple graph in which each pair of distinct vertices is joined by an edge is called a complete graph. A complete graph on n vertices is denoted by K_n. A sequence of distinct edges of the form v_0v_1 , v_1v_2 , ..., $v_{r-1}v_r$ is called a **path of length r** from v_0 to v_r , denoted by (v_0, v_r) -path. The **distance** between two vertices u and v in a graph G is the length of the shortest path from u to v. The diameter of a graph is the maximum distance between two distinct vertices.

^{*} Dr., Lecturer, Department of Mathematics, Shwebo University

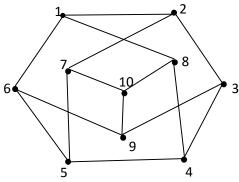


Figure 1.1: A graph G with diameter 2

A subgraph of a graph G = (V(G), E(G)) is a graph Y = (V(Y), E(Y))with $V(Y) \subseteq V(G)$ and $E(Y) \subseteq E(G)$. Two vertices u and v of G are said to be connected if there is a (u, v)-path in G. A connected graph is a graph such that any two vertices are connected by a path, otherwise it is **disconnected**.

A directed graph (or digraph) $\vec{G} = (V(\vec{G}), E(\vec{G}))$ consists of a finite nonempty set $V(\vec{G})$, called the set of vertices, and set $E(\vec{G})$ of ordered pairs of (not necessarily distinct) vertices, called the set of (directed) edges or arcs. If e=(u,v) or uv is a directed edge of \vec{G} , we say that e joins u to v, that u and v are endpoints of e(more specifically that u is the tail of e and v is the head of e). A digraph \vec{G} is called symmetric if, whenever (u,v) is an arc of \vec{G} , then (v, u) is also. A digraph \vec{G} is called complete if for every two distinct vertices u and v of \vec{G} , at least one of the arcs (u, v) and (v, u) is present in \vec{G} . A complete symmetric digraph of order n has both arcs (u, v)and (v, u) for every two distinct vertices u and v, denoted by $\vec{K_n}$.

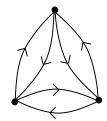


Figure 1.2: A complete symmetric digraph $\vec{K_s}$

2. Vertex-Transitive Graph

Before defining a vertex-transitive graph, we express the definition of an automorphism of a graph which plays a crucial role in determining the vertex-transitive graph.

An **isomorphism** from graph G to graph G' is a bijection $\phi: V(G) \rightarrow V(G')$ such that $uv \in E(G)$ if and only if $\phi(u) \phi(v) \in E(G')$. We say "G is isomorphic to G'", written $G \cong G'$, if there is an isomorphism from G to G'.

The graphs G and G' drawn below are isomorphic by an isomorphism that maps u, v, w, x, y, z to l, m, n, p, q, r respectively.

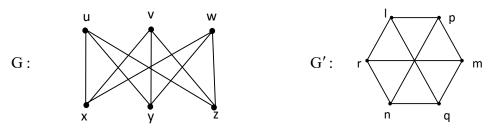


Figure 2.1: Isomorphic graphs G and G'

A **permutation** ϕ of V(G) is a function from V(G) into V(G) that is both one to one and onto.

An **automorphism** of a (simple) graph G is a permutation ϕ of V(G) which has the property that $uv \in E(G)$ if and only if $\phi(u) \phi(v) \in E(G)$, that is an isomorphism from G to G. The set of all automorphisms of a graph G forms a group under the operation of composition, which is called the **automorphism group**.

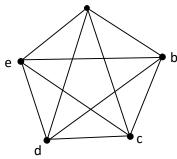


Figure 2.2: Complete graph K₅

In Figure 2.2, there is an automorphiosm ϕ of V(K₅) such that $\phi(a) = b, \phi(b) = c, \phi(c) = d, \phi(d) = e, \phi(e) = a.$

For any two vertices u and v of G, there is an automorphism ϕ of G such that $\phi(u) = v$, we say that G is **vertex-transitive.**

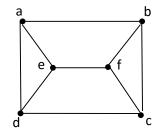


Figure 2.3: Vertex-transitive graph G

Now we interested in the structure of vertex-transitive graphs, in particular, Cayley graphs. First, we have to introduce some definitions of group theory.

3.Basic Definitions of Group Theory

A nonempty set of elements X is said to form a **group** if in X there is defined a binary operation, called the product and denoted by, such that

- (i) $a, b \in X$ implies that $a \cdot b \in X$ (closed).
- (ii) $a, b, c \in X$ implies that $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (associative law).
- (iii) There exists an element $e \in X$ such that $a \cdot e = e \cdot a = a$ for all $a \in X$ (the existence of an identity element in X).
- (iv) For every $a \in X$ there exists an element $a^{-1} \in X$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e$ (the existence of inverses in X).

We usually write a b instead of a \cdot b.

A finite group is a group which has a finite number of elements, otherwise we call it an infinite group.

The number of elements in X is called the **order** of X and it is denoted by O(X) or |X|. We define the **order of an element** x to be the least positive integer n such that $x^n = e$ and we denote it by O(x) or |x|.

A nonempty subset S of a group X is said to be a **subgroup** of X if, under the product in X, S itself forms a group.

If S is a subgroup of X, $a \in X$, then $aS = \{as | s \in S\}$. a S is called a **left** coset of S in X.

Let X be a group of permutation of a set A and $b \in A$, then the **stabilizer** of b (in X) is the subgroup $X_b = \{x \in X \mid x(b) = b\}$.

A group X is called a **cyclic group** if there exists an element $x \in X$, such that every element of X can be expressed as a power of x. In that case x is called **generator** of X.

Let $D_n = \{x^i \ y^j \ | \ i = 0, 1; \ j = 0, 1, ..., n-1; \ x^2 = e = y^n, x \ y = y^{-1}x\}$. Then D_n is a group, called the **dihedral group**, $(n \ge 3) \cdot O(D_n) = 2n$. In fact, we can write D_n also as

 $D_{n} = \left\{y, \ y^{2}, ..., \ y^{n-1}, \ y^{n}, \ x \ y, \ x \ y^{2}, ..., \ x \ y^{n-1}, \ x \ \mid x^{2} = e = y^{n}, \ x \ y = y^{-1}x\right\}.$

Let X be a group. A subset $H \subseteq X$ is a **generating set** of X if every element of X is obtainable as the product (or sum) of elements of H.

For the group Z_n , a nonempty set of integers modulo n is a generating set if and only if its greatest common divisor (gcd) is 1. For instance, the set {4,7} generates Z_{24} , since gcd (4,7) = 1 but {6,9} does not generate Z_{24} , since gcd (6,9) = 3.

If A is a finite set $\{1, 2, ..., n\}$, then the group of all permutations of A is the **symmetric group on n letters**, and is denoted by S_n . Note that S_n has n! elements.

4. Cayley Graphs

Now we shall express the definitions of Cayley graphs and the constructions of Cayley graphs with their given groups.

4.1 Definitions

- (i) Let X be a group and H a subset of X not containing the identity e. Then the **Cayley digraph** \vec{C} has vertex set $V(\vec{C}) = X$ and arc set $E(\vec{C}) = \{(g, gh) | h \in H, g \in X\}$. We write $\vec{C} = \vec{C}(X, H)$.
- (ii) Let H = X e. Then the resulting Cayley digraph will be denoted by $\vec{K} = \vec{K} (X, H)$ and called the **complete Cayley digraph**.
- (iii) Let X be a group and H a subset of X not containing the identity e such that $h \in H$ implies $h^{-1} \in H$ (that is, $H = H^{-1}$, where $H^{-1} = \{h^{-1} | h \in H\}$). Then the graph with vertex set V(C) = X and edge set $E(C) = \{ (g, gh) | h \in H, g \in X \}$ is called the **Cayley graph** C corresponding to X, H. We write C = C(X, H). Equivalently, the Cayley graph C = C(X, H) is the simple graph whose vertex set and edge set are defined as follows:

V(C) = X; E(C) =
$$\{ (g, h) | g^{-1} h \in H, \text{ where } g \in X, h \in H \}.$$

(iv)When H is a set of generators for X the Cayley digraph and the Cayley graph will be referred to as the **basic Cayley digraph** and the **basic Cayley graph** respectively.

4.2 Examples

(i) Let X be the group Z_5 , the set of integers modulo 5.

Let H be generating set $\{1\}$.

We can construct the Cayley digraph $\vec{C} = \vec{C}(Z_5, H)$ which has the vertex set $V(\vec{C}) = Z_5 = \{0, 1, 2, 3, 4\}$; and the arc set $E(\vec{C}) = \{(0, 1), (1, 2), (2, 3), (3, 4), (4, 5)\}$.

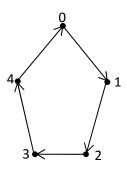


Figure 4.1: The Cayley digraph $\vec{C}(Z_5, \{l\})$

(ii) Let X be the cyclic group C₄ generated by a and $H = \{a, a^2, a^3\}$.

We can construct the complete Cayley digraph $\vec{K} = \vec{K} (C_4, H)$ which has the vertex set $V(\vec{K}) = C_4 = \{1, a, a^2, a^3\}$; and the arc set

 $E(\vec{K}) = \{(1,a), (1,a^2), (1,a^3), (a,a^2), (a,a^3), (a,1), (a^2,a^3), (a^2,1), (a^2,a), (a^3,1), (a^3,a), (a^3,a^2)\}.$

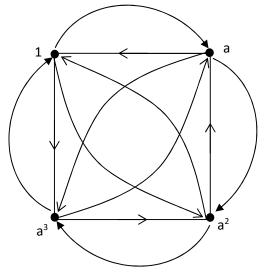


Figure 4.2: The complete Cayley digraph \vec{K} (C₄, {a, a², a³})

- (iii) Let X be the symmetric group $S_3 = \{1, (12), (13), (23), (123), (132)\}.$
 - Let $H = \{(12), (13), (23)\}.$

Then $H^{-1} = H$. We can construct the Cayley graph $C = C(S_3, H)$ which has

$$V(C) = S_3; E(C) = \{(1,(12)), (1,(13)), (1,(23)), ((12), (132)), ((12), (123)), ((12), (123)), ((12), (123)), ((12), (12), (12)), ((12), (12), (12)), ((12), (12), (12), (12)), ((12), ($$

((13), (132)), ((13), (123)), ((23), (132)), ((23), (123)) .

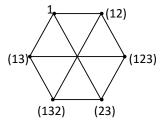


Figure4.3: The Cayley graph C(S₃, {(12), (13), (23)}).

4.3Theorem

The Cayley graph C(X, H) is well-defined and is connected if and only if H is a set of generators for X.

Proof. See [7].

4.4 Examples

(i) Let X be the dihedral group $D_4 = \{1, r, r^2, r^3, s, rs, r^2s, r^3s\}$, where $r^4 = s^2 = 1$, $sr = r^{-1}s$ and $H = \{r, s\}$.

Then H is a generating set for D_4 . We can construct the Cayley digraph $\vec{C} = \vec{C} (D_4, H)$ has the vertex set $V(\vec{C}) = D_4$ and the arc set $E(\vec{C}) = \{ (g, gh) \mid g \in D_4, h \in H \}.$

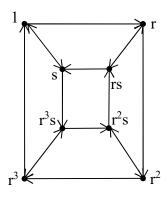


Figure 4.4: The connected Cayley digraph $\vec{C}(D_4, \{r, s\})$

(ii) Let X be $Z_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$ and let $H = \{2, 6\}$.

Since $H = H^{-1}$ and H is not a generating set, we can construct the disconnected Cayley graph C has vertex set $V(C) = Z_8$ and edge set $E(C) = \{ (g, gh) \mid g \in Z_8, h \in H \}.$

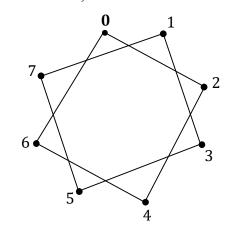


Figure 4.5: The disconnected Cayley graph $C(Z_8, H)$

In the above examples, we see that if the subset H is a generating set for the given group then the Cayley digraph is connected and if H is not a generating set then the Cayley graph is disconnected.

5. Relations between Cayley Graph and Vertex-Transitive Graph

In this section, we interested in a relation between Cayley graph and vertex-transitive graph.

5.1Theorem

Every Cayley graph C(X, H) is vertex-transitive.

Proof.

For each g in X we define a permutation ϕ_g of V(C) = X by the rule $\phi_g(h) = gh, h \in X$.

This permutation $\varphi_{\rm g}$ is an automorphism of C , for

$$(\mathbf{h},\mathbf{k}) \in \mathbf{E}(\mathbf{C}) \Rightarrow \mathbf{h}^{-1}\mathbf{k} \in \mathbf{H}$$
$$\Rightarrow (\mathbf{g}\mathbf{h})^{-1}(\mathbf{g}\mathbf{k}) \in \mathbf{H}$$
$$\Rightarrow (\phi_{g}(\mathbf{h}), \phi_{g}(\mathbf{k})) \in \mathbf{E}(\mathbf{C})$$

Now for any $h,\,k\in X,\;\varphi_{kh^{-l}}\left(h\right)\!=\!\left(kh^{-l}\right)\!h=k.$

Hence Cayley graph C(X, H) is vertex-transitive.

5.2 Petersen graph

The **Petersen graph** P(5,2) is a cubic graph having a vertex set $V = \{u_0, ..., u_4, v_0, ..., v_4\}$ and an edge set $E = \{(u_i, u_{i+1}), (u_i, v_i), (v_i, v_{i+2}) | i = 0, ..., 4\}$ where all the subscripts are taken modulo 5. The **generalized Petersen graph** $P(n, k)(n \ge 5, 0 < k < n)$ is the cubic graph having a vertex set $\{u_0, ..., u_{n-1}, v_0, ..., v_{n-1}\}$ and an edge set $\{(u_i, u_{i+1}), (u_i, v_i), (v_i, v_{i+2}) | i = 0, ..., n-1\}$ where all the subscripts are taken modulo n.

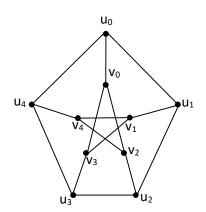


Figure 5.1: The Petersen graph P(5, 2).

The following is an example of a vertex-transitive graph which is not a Cayley graph.

5.3 Example

The Petersen graph is vertex-transitive but it is not a Cayley graph.

Indeed, we can see the diameter of the Petersen graph is 2 and the diameter of a Cayley graph C = C(X, H) is the smallest positive integer n such that $X=H\cup H^2\cup...\cup H^n$ where $H^2 = \{hk | h, k \in H\}$ and $H^i = H^{i-1}H$ for $i \ge 3$.

We now show that all the Cayley graphs of order 10 having degree 3 are of diameter greater than 2 and so none of them is the Petersen graph.

There are two groups of order 10. The first one is the cyclic group Z_{10} and the second one is the dihedral group D_5 . The group operation here are additions and we replace H^{-1} by – H.

Case 1.

 $X = Z_{10} = \{0, 1, ..., 9\}.$

Since -H = H and |H| = 3, $5 \in H$ and H can only be one of the following four sets

$$H_1 = \{1, 5, 9\}, \qquad H_2 = \{2, 5, 8\},$$

$$H_3 = \{3, 5, 7\}, \qquad H_4 = \{4, 5, 6\}.$$

Now $|H_i + H_i| = 5$ for each i = 1, 2, 3, 4. Thus the diameter of C is greater than 2.

Case 2.

 $X = D_5 = \{0, b, 2b, 3b, 4b, a, a+b, a+2b, a+3b, a+4b\}$ where 2a = 0, 5b = 0and b + a = a + 4b.

In this case a, a + b, a + 2b, a + 3b and a + 4b are the only elements of order 2 in X.

Hence H can only be one of the following three types of sets

$$\begin{split} H_{1} &= \left\{ a + jb, b, 4b \right\}, \quad j = 0, 1, 2, 3, 4; \\ H_{2} &= \left\{ a + jb, 2b, 3b \right\}, \quad j = 0, 1, 2, 3, 4; \\ H_{3} &= \left\{ a + j_{1}b, a + j_{2}b, a + j_{3}b \right\}, \quad 0 \leq j_{1} < j_{2} < j_{3} \leq 4. \\ Now \left| H_{i} + H_{i} \right| = 5 \text{ for each } i = 1, 2, 3. \end{split}$$

Thus the diameter of C is greater than 2 also.

Petersen graph is a vertex-transitive graph but it is not a Cayley graph.

From the above example, we see that every vertex-transitive graph is not a Cayley graph. But every vertex-transitive graph can be constructed almost like a Cayley graph. This result will be shown in Theorem 5.5. We shall apply the following theorem to prove Theorem 5.5.

5.4 Theorem

Let S be a subgroup of a finite group X and let H be a subset of X such that $H^{-1} = H$ and $H \cap S = \emptyset$. If G is the graph having vertex set V(G) = X/S

(the set of all left cosets of S in X) and edge set $E(G) = \{(xS, yS) | x^{-1}y \in SHS\}$, then G is vertex-transitive.

Proof.

We first show that the graph G is well-defined. Suppose that $(xS, yS) \in E(G)$ and $x_1S = xS$, $y_1S = yS$. Then $x_1 = xs$, $y_1 = yk$ for some $s, k \in S$. Now $x^{-1}y \in SHS \Longrightarrow (xs)^{-1}(yk) \in SHS$ $\Rightarrow x_1^{-1}y_1 \in SHS$ $\Rightarrow (x_1s, y_1s) \in E(G)$.

Hence the graph G is well-defined.

Next, for each $g \in X$ we defined a permutation ϕ_g of V(G) = X/S by the rule such that $\phi_g(xS) = gxS$, $xS \in X/S$.

This permutation φ_{g} is an automorphism of G, for

$$(xS, yS) \in E(G) \implies x^{-1}y \in SHS$$
$$\implies (gx)^{-1}(gy) \in SHS$$
$$\implies (gxS, gyS) \in E(G)$$
$$\implies (\phi_g(xS), \phi_g(yS)) \in E(G).$$

Finally, for any xS, $yS \in X/S$, $\phi_{yx^{-1}}(xS) = yx^{-1}(xS) = yS$.

Hence the graph G is vertex-transitive.

The graph G constructed in above theorem is called the **group-coset** graph X/S generated by H and is denoted by G(X/S,H).

5.5 Theorem

Let G be a vertex-transitive graph whose automorphism group is A. Let $H = A_b$ be stabilizer of $b \in V(G)$. Then G is isomorphic with the groupcoset graph G(A/H, S) where S is the set of all automorphism x of G such that $(b, x(b)) \in E(G)$.

Proof.

We can see that $S^{-1} = S$ and $S \cap H = \emptyset$.

We now show that $\phi: A/H \rightarrow Ggiven by \phi(xH) = x(b)$, where $xH \in A/H$, defines a map.

Suppose xH = yH. Then y = xh for some $y \in H$. $\phi(yH) = y(b) = (xh)(b) = x(h(b)) = x(b) = \phi(xH)$. We next show that ϕ is a graph isomorphism. Suppose $\phi(xH) = \phi(yH)$. Then x(b) = y(b) $y^{-1}x(b) = b$ $y^{-1}x \in H$ $x \in yH$ yH = xH.

So ϕ is one to one.

Let c be a vertex of G.

Since G is vertex-transitive, there exists z in A such that z(b) = c

Thus $\phi(zH) = z(b) = c$.

So ϕ is onto.

Next $(xH, yH) \in E(G(A/H, S))$ $\Leftrightarrow x^{-1}y \in HSH$ $\Leftrightarrow x^{-1}y = hzk \text{ for some } h, k \in H, z \in S$ $\Leftrightarrow h^{-1}x^{-1}yk^{-1} = z$ $\Leftrightarrow (b, h^{-1}x^{-1}yk^{-1}(b)) \in E(G)$ $\Leftrightarrow (b, x^{-1}y(b)) \in E(G)$ $\Leftrightarrow (x(b), y(b)) \in E(G)$ $\Leftrightarrow (\phi(xH), \phi(yH)) \in E(G).$

Thus G is isomorphic with the group-coset graph G(A/H, S).

References

- 1. Alspach, B., "CS E6204 Lecture 6 Cayley Graphs", University of Regina, Canada, pp. 2-15,(2010).
- 2. Biggs, N., "Algebraic Graph Theory", Cambridge University Press, Cambridge, (1993).
- 3. Bondy, J.A. and Murty, U.S.R., "Graph Theory with Applications", The Macmillan Press Ltd, London, (1976).
- 4. Chen, T. Y., "Connectivity in Vertex-Transitive Graphs", M.Sc Thesis Submitted to Simon Fraser University, Canada, pp.27-38, (1994).
- 5. Herstein, I.N., "Topics in Algebra", John Wiley and Sons, Inc., New York, (1975).
- 6. Khanna, V. K. and Bhambri, S.K., "A Course in Algebra", Vikas Publishing House Pvt., Ltd., New Delhi, (1998).
- 7. Parthasarathy, K.R., "Basic Graph Theory", Tata McGraw-Hill Publishing Company Limited, New Delhi, (1994).
- 8. Yap, H.P., "Some Topics in Graph Theory", Cambridge University Press, Cambridge, 1986.