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A SIMULATION STUDY ON EFFECT OF OUTLIERS IN REGRESSION 

MODEL WITH DUMMY VARIABLE 

Maw Maw Khin1  

Abstract 

This paper aimed to study the effect of outliers in the regression model with a dummy variable based 

on simulated data. The two robust methods namely Robust Distance Least Absolute Value (RDL1) 

and Least Trimmed Squares (LTS) and classical method like Ordinary Least Squares (OLS) 

estimation method were applied to these data. Simulation study showed that the RDL1 and LTS 

methods detected several outliers whereas the OLS residuals did not reveal any outliers. Based on 

the mean squared error (MSE) criterion, the RDL1 estimator is more resistant, but it suffers from the 

swamping effect. The LTS estimator has the second smallest MSE and the OLS method has the 

largest MSE in this case. The OLS regression is the best when data are free from outliers. 
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Introduction 

Regression analysis is an important tool for any quantitative research. For the regression 

analysis, the Ordinary Least Squares (OLS) method can produce bad estimates when the error 

distribution is not normal, particularly when the errors are heavy-tailed. It explores the relationship 

between dependent and explanatory variables. Many hypotheses claimed by economic theories can 

be tested by applying a regression model on real data. The OLS method is mostly applied in the 

regression technique. The application of this specific method requires several assumptions. A 

researcher should be aware of the fact that the OLS method performs poorly if these assumptions 

are not fulfilled. 

In the last two centuries, various strategies were introduced to test whether the model 

assumptions are fulfilled or not. Besides, various more general regression techniques are available 

based on less stringent conditions. Until the mid-20th century, violations of the model assumptions 

were treated independently of any common error source. But in particular, outlying observations 

within the data can cause violations of model assumptions, and thereby it can have a huge impact 

on regression results. 

Even if one outlying observation can destroy OLS estimation, resulting in parameter 

estimates that do not provide useful information for the majority of the data. Outliers will make the 

error variance inflate, the confidence interval becomes stretched, and the estimation cannot become 

asymptotically consistent. When outliers inflate the error variance, they damage the model of 

power to detect the outliers. Rousseeuw and Van Zomeren (1990) proposed a vertical outlier, good 

leverage point, and bad leverage point. 

Rousseeuw and Van Zomeren (1990) pointed out that high leverages can affect the 

estimated slope of the regression line in OLS, thus they may cause more serious problems than the 

vertical outlier. Moreover, their occurrence in regression models may move to some low leverage 

as well as high leverage and it can turn in vice versa. These two concepts are called masking and 

swamping in linear regression.  Furthermore, the range of explanatory variables increases when 

they exist in regression analysis. Thus, the multiple coefficient of determination (R2) which is a 

well-known and popular measure of goodness-of-fit in the regression models will increase even by 

any changes of a single X variable. Besides, high leverages may be the prime source of collinearity-

influential observations whose presence can make collinearity and can destroy the existing 
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collinearity pattern among the X variables. In this respect, to eliminate these outliers' effects on 

linear regression the role of robust method becomes necessary. 

Robust regression methods have been developed as an improvement to OLS estimation in 

the presence of outliers and provide information about what a valid observation is and whether this 

should be thrown out. The primary purpose of robust regression analysis is to fit a model that 

represents the information in the majority of the data. In this context, robust regression is to employ 

a fitting criterion that is not as vulnerable as OLS to unusual data. One remedy is to remove 

influential observations before using the OLS fit. 

The robust methods provide an alternative to an OLS regression model when fundamental 

assumptions are unfulfilled by the nature of the data. When the estimates of the parameters of 

statistical regression models and test assumptions, it is frequently found that assumptions are 

substantially violated. Sometimes, the variables can be transformed to confirm those assumptions. 

Often, however, a transformation will not eliminate or satisfy the leverage of influential outliers 

that bias the prediction and distort the significance of parameter estimates. Under these 

circumstances, robust regression that is resistant to the influence of outliers may be the only 

reasonable remedy. The objectives of the study are (i) robust regression methods are better than 

the OLS estimation methods when data contain outlying observations and (ii) if data were free 

from outliers, the OLS estimation method outperforms the robust regression methods.  
 

2. Data and Method 

To show the fact that the robust procedure outperforms the classical method in the dummy 

variable regression model, simulation with data set contaminated by different types of outliers was 

carried out. Observations used in this analysis were to be classified into four categories namely 

regular data, good leverage points, vertical outliers, and bad leverage points. The model included 

two types of regressors namely continuous and discrete regressors was expressed in the following 

form. 

 ,        i = 1,…,30,                                    (1) 

Where both 1ix  and 2ix follow a standard normal distribution, 1iI is a binomial distribution with a 

success rate of 0.5, and i is a normal distribution with mean zero and standard deviation 0.5. The 

regressand variable was generated by the model stated in Equation (1). Once these 30 observations 

have been generated, cases 25 and 26 were then transformed to be vertical outliers by doubling 

their y values and keeping the others. Cases 27 and 28 were bad leverage points by adding 9 to 

their x1 values and keeping the others as well. Case 29 and 30 were good leverage points by adding 

9 to both x1 and x2 values and reproducing the corresponding y values as the model (1). The 

resulting simulated data are presented in Appendix Table (1). 

 

Result and Discussion 

The Robust Distance Least Absolute Value (RDL1), Least Trimmed Squares (LTS), and 

OLS estimation methods were applied to these simulated data and the results were summarized in 

Table (1). First, the RDL1 estimation method was applied to these simulated data. For checking 

outliers, the standardized residuals were shown in Figure 1(a). The case 25, 26, 27, 28, 29, and              

30 were revealed as outliers. This is because the weight was calculated by the continuous design 

matrix without considering the model fitting. The resulting weights were shown in Figure 1(b). 

Therefore, case 27, 28, 29, and 30 were outlying observations occurred from X space and will be 

given relatively small weights as shown in part (b) of Figures (1). These make case 29 and 30 

become bad leverage points in the diagnostic plot of Figure 1(c). The cutoff values were indicated 
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 2.5 and  2

975.0,2  by horizontal and vertical lines. These results pointed out that the RDL1 method 

results in the swamping effect due to its weights for the L1 procedure obtained from the application 

of a continuous design matrix. 

Thus, the same data set was used to apply the LTS estimation method and the results were 

displayed in Table (1). Parts (a), and (b) of Figure (2) show the results of robust standardized 

residuals and the diagnostic plot obtained from LTS regression analysis, respectively. From part 

(a), the LTS procedure detected cases 25, 26, 27, and 28 to be outliers. It gave a weight 1 for both 

cases 29 and 30. The corresponding diagnostic plot also divided all points into the right categories 

as the original configuration of these data being generated. The fit from the LTS method ignored 

outlying observations, which gave the MSE of 0.3042 shown in Table (1). 

Then, the OLS estimation method was applied using the simulated data again. The large 

MSE of OLS for the simulated data set argued that data were highly influenced by outliers and 

Figure 3(a) shows the vertical outliers or bad leverage points. The OLS regression estimators often 

break down in the presence of those outliers. It was evident from the graphical sketch of data as 

the OLS line was pulled towards the middle of the two groups of the data points rendering it was 

an unrepresentative line. A Gaussian Q-Q plot was shown in Figure 3(b) confirms that the residuals 

were roughly normally distributed. Only a few outliers can cause the distribution to be heavier-

tailed. 

According to the result of LTS analysis, the observations (25, 26, 27, and 28) gained from 

the simulated data were excluded and the remaining data were rerun using the OLS estimation 

method. Table (2) presents the regression results for the two data sets (contaminated and non-

contaminated). New OLS regression represents the results after eliminating the outlier found 

through the LTS method. The intercept and slope coefficients changed and all were statistically 

significant at a 1% level. The fact that the F and R2 values increased indicates that the new OLS 

regression is well-matched with those remaining data. The OLS line fits the simulated (non-

contaminated) data well with a reasonable MSE of 0.1230. Figure 4(a) shows the OLS residuals 

without considering the cases 25, 26, 27, and 28. The cases 29 and 30 were located near the 

regression surface. Figure 4(b) suggests that the residuals were approximately normally distributed. 

Based on the results from non-contaminated data, it can be concluded that the OLS regression 

(New) method outperforms than two robust methods. 
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 (c)                                                                    (d) 

Source:           Appendix Table (1) 

Figure 1 Simulated Data Set Using the RDL1 Procedure: (a) plot of the standardized residuals; 

(b) plot of weights; (c) diagnostic plot and (d) least squares residuals without cases 25, 

26, 27, and 28 

 

(a)                                                                    (b) 

Source: Appendix Table (1) 

Figure 2  Simulated Data Set Using the LTS Robust Procedure: (a) plot of the standardized 

residuals; and (b) diagnostic plot 
 

Table 1  OLS, LTS and RDL1 Regression Models Fitted to the Simulated Data 

 

Method 

Coefficients  

MSE Constant x1 x2 
1iI  

OLS 8.84*** 0.43** 1.34*** 2.47** 6.1504 

LTS 9.22*** 1.16** 0.72*** 1.37*** 0.3042 

RDL1 8.94*** 0.82*** 0.77*** 1.40 *** 0.1849 
 Note: (1) Significant at *** 1%, **5%, * 10% 

 Source: Appendix Table (1) 

 

 

 

 

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Case

S
ta

n
d

a
rd

iz
e
d

 R
e
s
id

u
a
l

Index

S
ta

n
d

a
rd

iz
e

d
 L

T
S

 R
e

s
id

u
a

l

0 5 10 15 20 25 30

-2
0

-1
5

-1
0

-5
0

5
1

0 25

27
28

-2.5

2.5

Robust Distance computed by the MCD

S
ta

n
d

a
rd

iz
e

d
 L

T
S

 R
e

si
d

u
a

l

0 2 4 6 8 10 12 14

-2
0

-1
5

-1
0

-5
0

5
1

0

29

27
28

-2.5

2.5



J. Myanmar Acad. Arts Sci. 2021 Vol. XIX. No.8 57 

Table 2 Two Ordinary Least Squares Regression Results  

OLS Regression  

Based on Contaminated Data 

New OLS Regression Based on 

 Non-contaminated Data 

Variable Coefficient Standard 

Errors of 

Coefficients 

t 

Statistics 

Coefficient Standard 

Errors of 

Coefficients 

t 

Statistics 

Constant 8.8410  *** 

 

0.5926 14.9203 9.1344*** 0.0872 104.7172 

x1 0.4276  ** 

 

0.1737 2.4611 1.0139*** 0.0412 24.6214 

x2 1.3386  *** 

 

0.2355 5.6847 0.9480*** 0.0504 18.8205 

1iI  2.4729  ** 

 

0.9456 2.6153 0.9954*** 0.1484 6.7095 

MSE = 6.1504,    R2 = 0.7995,      F = 34.55***, n=30 MSE = 0.1230, R2  = 0.996,  F =2046.865***, n=26 

     Note: (1) Absolute value of t statistics in parentheses  

  (2)  Significant at *** 1%, **5%, * 10% 

      Source: Appendix Table (1) 

 

(a)         (b) 

Source:     Appendix Table (1) 

Figure 3    Simulated Contaminated Data Set Using the OLS: (a) scatter plot with OLS line; and 

(b) quantiles standard normal plot 
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               (a)               (b) 
Source:       Appendix Table(1)  

Figure 4  Simulated Non-contaminated Data Set Using the OLS: (a) scatter plot with OLS            

line; and (b) quantiles standard normal plot  

 

Conclusion 

This study illustrated that the RDL1 and LTS methods outperform the OLS method in the 

regression model involved with a dummy variable. It was found that based on the contaminated 

simulation data, the RDL1 and LTS methods detect several outliers whereas the OLS residuals do 

not reveal any outliers. Based on the mean squared error (MSE) criterion, the RDL1 estimator is 

more resistant but it cannot detect correctly for the cases 29 and 30. It suffers from a swamping 

effect. The OLS method is much worse in this case.  

According to the results of LTS analysis, it is correctly detected the observations 25 and  

26 are vertical outliers, 27 and 28 are bad leverage points. It has the second smallest MSE of 

0.3042. The cases 25, 26, 27, and 28 are omitted and the remaining data are rerun using the OLS 

method. In this case, the two robust namely RDL1 and LTS and OLS methods worked well, 

indicating that the values of MSE are quite close to each other. Based on this study, it can be 

concluded that when there are outliers in the data, the robust methods perform better than the OLS 

method. It is found there is no outlier in the data OLS estimation method is more robust than RDL1 

and LTS methods. 
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Table 1  Simulated Data Set        Appendix 
 

Case x1 x2 I1 y Case x1 x2 I1 y 

1 0.92 0.04 0 10.05 16 -0.56 1.15 0 9.46 

2 -0.11 1.23 0 9.77 17 0.94 -1.72 1 9.33 

3 1.39 1.2 1 12.45 18 -1.46 1.13 1 9.38 

4 0.13 -1.12 0 8.66 19 1.2 -1.16 0 8.9 

5 0.25 -0.86 0 8.28 20 -1.29 0.15 0 8.62 

6 -1.44 0.26 0 7.96 21 -1.7 1.04 0 9.01 

7 2.18 0.3 1 12.65 22 0.17 -0.1 0 9.17 

8 -0.48 -1.65 0 7.28 23 -1.09 -0.3 0 7.43 

9 -1.75 0.59 1 9.36 24 -1.27 0.15 0 7.93 

10 1.64 1.17 1 13.28 25 0.06 -2.92 1 14.16 

11 -0.2 0.55 0 9.05 26 0.45 -1.97 1 14.54 

12 0.87 0.7 1 11.31 27 8.89 0.22 0 9.52 

13 -1.39 2.01 0 9.33 28 6.87 -1.15 1 7.19 

14 0.18 -0.7 1 9.95 29 10.96 8.26 0 28.35 

15 -1.21 -1.29 0 6.89 30 10.37 9.21 1 29.28 

 Source:  Simulated Data obtained from Model (1) 
 


