
J. Myanmar Acad. Arts  Sci. 2018 Vol. XVI. No.2 

1. Department of Physics, Mandalay University of Distance Education, Mandalay, Myanmar.  
 2. Department of Physics, Mandalay University, Mandalay, Myanmar. 

COMPARISON OF THE FORM FACTORS OF TIN 
ISOTOPES 

 

Cho Cho San1, Khin Swe Myint2 
Abstract 

The purpose of this research is to obtain the form factors of 116Sn, 
118Sn  and 124Sn  nuclei using two parameter Fermi model (2PF) . The 
structural parameters, namely radius parameter (c) and the skin thickness 
parameter (z) of 116Sn, 118Sn and 124Sn taken from the experimental data are 
used to get the charge density distribution. After getting the charge density 
distribution, the root mean square radius and the form factors are calculated. 
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radius. 
 

Introduction 
There are two types of nuclear distributions which are nuclear charge 

distribution and nuclear matter distribution. We are dealing with nuclear 
charge density distribution. In theory, nuclear charge density distributions are 
expressed in various form factors depending upon nuclear model. In the 
present work nuclear distribution on charge distribution are given in two 
parameter Fermi model (2PF) and three parameter Fermi model (3PF) 
respectively. The parameters consist in these models are obtained from 
scattering experiments. A study of electron scattering would be a method of 
measuring the distribution of the static electromagnetic field of the nucleus. 
The scattering of β-particles are not monoenergetic, they have low momentum 
and suffer, in addition to large single scatters, severe multiple scattering  
effects. This property prevented clear results being obtained from early 
measurements of electron scattering. However, the scattering of more 
energetic electrons (>100 MeV) is a very important tool in the investigation of 
the nuclear size.   

In atomic physics, the boundary of an atom is not sharp since the wave  
function of the outer electrons decreases monotonically: therefore we should 
expect  a similar situation to occur in nuclear physics. As we have seen, when 
Rutherford was investigating the scattering of α-particle by gold, his scattering 
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measurements were in agreements with the predictions found assuming that 
the interaction was the Coulomb potential between two point charges. Thus 
for gold at the   classical distance of closest approach that could be reached 
with the α-particle energies that Rutherford had available, he was unable to 
detect any deviations which might indicate that the charges on α-particle and 
the gold nucleus were  point like. However, using light nuclei as target, 
Rutherford found deviations which indicated a breakdown in the Coulomb’s 
law when the classical distance of closest approach was about 10-4 m. These 
deviations occur at short distances of approach, because the finite charge 
density distributions overlap and the strong nuclear forces which exist 
between the α-particle and nucleus come into play. It is necessary to 
distinguish between the distribution of the source of electric fields (proton) 
and the source of nuclear fields (protons and neutrons), although these sources 
are probably strongly linked. To make progress we should use a probe for one 
which does not feel the other. The electron is coupled to an electric field due 
to charge sources but does not experience the nuclear force. Conversely, the 
neutron is electrically neutral but does not experience the nuclear force. Thus 
separate scattering experiments with these two particles should, in principle, 
go some way to measuring these two distributions. So, electron scattering 
experiments are tools to obtain charge density distribution of nuclei while 
neutron scattering experiments are used to get matter distribution. 
 

Relation between Cross Section and Form Factor 
 Form Factors are an intuitive and simple tool used to describe the scattering 
particles from extended targets. Here we will show how the Form Factor 
comes about in the context of the scattering of spinless electrons. A discussion 
of the more rigorous description, which includes electron spin a magentic 
moment, will follow. The typical set up has an electron beam with initial 
momentum ሬܲԦ  directed at the scattering target. 
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 The electrons are deflected through an angle ߠ with a final momentum 
ሬܲԦ.We define the momentum transfer as the vector ݍ ሬሬሬԦ = ሬܲԦ −  ሬܲԦ. As with 
many scattering experiments, the quantity we are interested in is the 
differential cross section ௗఙ

ௗΩ of our scattered electrons off our target. This 
quantity can be measured in the lab and easily connected to QM scattering 
theory in order to confirm theory and provide insight to the physical processes 
at play. Earlier we had shown that the differential cross section is related to 
the scattering amplitudes through the relation: 
                                      ௗఙ

ௗΩ =   
  |݂ ሺߠ , ∅ሻ|ଶ                                                 (1)                                                   

The scattering amplitudes ݂ ሺߠ , ∅ሻ  can be obtained in approximate form 
using the Born Approximation. To first order (and up to a normalization) the 
Born Approximation can be written as: 
                                               ݂ଵୀ  ർ∅ሬԦቚܸቚ∅ሬԦ                 (2) 
                                                ∅ሬԦ

∗ ሺݎԦሻ ܸ ሺݎԦሻ∅ሬԦሺݎԦሻ݀ଷሺݎԦሻ                             (3) 
In the first Born Approximation the initial incoming wave and the outgoing 
waves are assumed to be plane waves of the form: 

∅ሬԦሺݎԦሻ = ݁ሬԦ∙Ԧ 
∅ሬԦሺݎԦሻ = ݁ሬԦ∙Ԧ 

We will also define the momentum transfer as ሬԦ
ℏ = ሬ݇Ԧ − ሬ݇Ԧ . Making use of 

these definitions  the first Born Approximation can be written as: 
                                                     ݂ଵୀ  ݁ሬሬԦ∙ೝሬሬԦ

ℏ  ܸሺݎԦሻ݀ଷݎ ሬሬԦ                              (4) 
This result is still quite general; in order to proceed we will need to assume a 
specific form for the potential, VሺݎԦሻ. We can describe an extended charge 
distribution by Ze ߩሺݎԦሻ with 
                                      ԦݎԦሻ݀ଷݎሺߩ = 1                            (5)                   
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In this case, the potential experienced by an electron located at ሺݎԦሻ  is given 
by the Coulomb potential: 

          ܸሺݎԦሻ = ି௭మ
ସగఌబ   ఘሺԦሻ

ቚԦିᇲሬሬሬሬԦቚ  ݀ଷݎᇱሬሬሬԦ                                      (6) 
Substitute this potential into the general expression for the first Born 
Approximation  to the scattering amplitudes ݂ ሺߠ , ∅ሻ in  (eq. 4) 

  ݂ଵୀ  ି௭మ
ସగఌబ   ݁ሬሬԦ∙ೝሬሬԦ

 ℏ ఘቀᇲሬሬሬሬԦቁ
ቚԦିᇲሬሬሬሬԦቚ  ݀ଷݎᇱሬሬሬԦ ݀ଷݎԦ                           (7) 

Make the substitution ሬܴԦ = ݎԦ − ᇱሬሬሬԦ  and noting that ݀ଷݎ ሬܴԦ = ݀ଷݎԦ, 
   ݂ଵୀ  ି௭మ

ସగఌబ   ݁ሬሬԦ∙ೝሬሬԦ
ℏ ఘቀᇲሬሬሬሬԦቁ

หோሬԦห  ݀ଷݎᇱሬሬሬԦ ݀ଷ ሬܴԦ                          (8) 
 

 ି௭మ
ସగఌబ   ݁ሬሬԦ∙ೝሬሬԦ

ℏ ఘቀᇲሬሬሬሬԦቁ
หோሬԦห  ݀ଷݎᇱሬሬሬԦ ݀ଷ ሬܴԦ                               (9) 

 ି௭మ
ସగఌబ   ሬሬԦ∙ೃሬሬԦℏ

หோሬԦห  ݀ଷ ሬܴԦ  ቈ ݁ሬሬԦ∙ ೝᇲሬሬሬሬሬԦ
ℏ  ᇱሬሬሬԦ                    (10)ݎᇱሬሬሬԦ൯݀ଷݎ൫ߩ 

 
This bracket factor is known as the ‘Form Factor’, F(q). 
            F(q) =  ݁ሬሬԦ∙ೝᇲሬሬሬሬԦ

ℏ  ᇱሬሬሬԦ                                    (11)ݎᇱሬሬሬԦ൯݀ଷݎ൫ߩ  
It can be shown that when the expression for  ݂ଵ is used to determine   ௗఙ

ௗΩ , 
    ௗఙ

 ௗΩ =   
  ݂భ

ଶ  ሻ|ଶ                       (12)ݍሺܨ|
                                                                                    

      ቀ ௗఙ
 ௗΩቁ௧ =  

  ݂భ
ଶ       (13) 

 
 
So, Relation between cross section and form factor is  



J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.2 55  
                                                  ௗఙ

 ௗΩ =   ቀ ௗఙ
 ௗΩቁ௧  ሻ|ଶ             (14)ݍሺܨ|

To provide some insight into the meaning of form factors and 
probability distribution, we shall connect F (q2) to nuclear radius and give 
examples of the relation between form factor and probability distribution. For  
qR<<1, where R is approximately the nuclear radius, the exponential in 
equation (11) can be expanded, and F(q2) becomes  
                       F(q2) = 1- ଵ

ℏమ 〈ଶݎ〉 ଶݍ  +  ⋯      (15) 
                         where  〈ݎଶ〉 is defined by 
〈ଶݎ〉                            = ݀ଷݎ ݎଶߩሺݎሻ                 (16) 
  and is called the mean-square radius. 
 

Two Parameter Fermi Model  
In our calculation, two parameter Fermi model is used to calculate the root 
mean square radius and charge density distribution. 
For two parameter Fermi model, charge density distribution is  
ሻݎሺߩ                                 =  ఘబ

൫ଵା ሺೝషሻ ⁄ ൯                                  (17) 
Where, c = the radius parameter 
             z = the skin thickness parameter 
The variation of form factor with momentum transfer is  
                             F(q) = ସగ

    (18)                    ݎሻ݀ݎݍሺ݊݅ݏݎሻݎሺߩ
The parameters of two parameter Fermi model are expressed in Table. 
 

No. Nucleus c (fm) z (fm) 
1 116Sn 5.358 0.550 
2 118Sn 5.412 0.560 
3 124Sn 5.490 0.534 
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Calculation of Charge Density Distribution, Form Factor and RMS for 
Two Parameter Fermi Model 
Density distribution for two parameter Fermi model is  
ሻݎሺߩ                                                =  ఘబ

൫ଵା ሺೝషሻ ⁄ ൯                      (19) 
Where, c = the radius parameter   
             z = the skin thickness parameter 
The normalization condition is  
                                                 ݎଶ݀ݎߨሻ4ݎሺߩ = ܼ݁                              (20) 
                                                ݎଶ݀ݎሻݎሺߩ = 

ସగ                                     (21) 
    By substituting equation (19) in equation (21), 
     Let,                       TER=  ଵ

൫ଵାሺೝషሻ ⁄ ൯  (22)                              ݎଶ݀ݎ
                                  ρ= ଵ

்ாோெ   ×  
ସగ                    (23) 

   By substituting equation (23) in equation (19), 
ሻݎሺ ߩ                                   =  ଵ

ሺ்ாோெሻమ  ቀ
ସగቁ  (24) 

The variation of form factor with momentum transfer is  
                                 F(q)= ସగ

   ఘబ
൫ଵା௫ሺሺିሻ ௭⁄ ሻ൯  (25)     ݎሻ݀ݎݍሺ݊݅ݏݎ

                             F(q)=  ଵ  ଵ
்ாோெ  ଵ

൫ଵା௫ሺሺିሻ ௭⁄ ሻ൯  (26)  ݎሻ݀ݎݍሺ݊݅ݏݎ
 Root mean square radius is  
                                                      〈rଶ〉ଵ ଶ⁄  =   ସగ

           ݎସ݀ݎሻݎሺߩ
                                                      〈rଶ〉ଵ ଶ⁄  =   ସగ

    ଵ
ሺ்ாோெሻమ  

ସగ  ݎସ݀ݎ
                                                      〈rଶ〉ଵ ଶ⁄ =   ర

ሺ்ாோெሻమ  (27)  ݎ݀ 
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The charge density distributions, the form factors and root mean square radii 
are solved numerically by using  a FORTRAN code. 

 

Results and Discussion 
The charge density distribution, form factor and the root mean square 

radius of 116Sn, 118Sn  and 124Sn are calculated by using two perimeter Fermi 
model (2PF). The parameters we used in our calculation for Sn isotopes are 
shown in Table (1). 

   Table 1. The parameters of two parameter Fermi model 
No. Nucleus c (fm) z (fm) 
1 116Sn 5.358 0.550 
2 118Sn 5.412 0.560 
3 124Sn 5.490 0.534 

   
By using these parameters, charge density distributions are calculated 

and the resultant distributions are displayed in figure (1), (2) and (3). From 
these distributions, we calculated the form factors and root mean square radii 
for the Sn isotopes. The calculated form factors are displayed in figure (4), (5) 
and (6). The root mean square radii are displayed in Table (2).  

 
        Table 2.  Comparison for RMS value for 116Sn, 118Sn  and 124Sn 

No. 116Sn 118Sn 124Sn 
RMS radii 4.530609 4.576880 4.596027 

Experimental Value 4.53 4.58 4.60 
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               Figure 1. Charge density distribution of  116Sn 
 

 
 
 
 
 
 
 

                Figure 2. Charge density distribution of 118Sn 
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Figure 3. Charge density distribution of 124Sn 
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Variation of Form factor with momentum transfer for 116Sn 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 4. Comparison of experimental and calculated results of 

form factor for 116Sn 
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Variation of Form factor with momentum transfer for 118Sn 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 5. Comparison of experimental and calculated results of 
form factor for 118Sn 
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Variation of Form factor with momentum transfer for 124Sn 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Comparison of experimental and calculated results of form factor for   
124Sn 
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Conclusion 
In our calculation, we have calculated the charge density distributions 

in two parameter Fermi model for Sn isotopes. From these density 
distributions, we calculated the form factors and root mean square radii of Sn 
isotopes. In our results, we concluded that charge form factors and rms values 
which are calculated using the charge density of two parameter Fermi model 
is good agreement with the experimental value. 
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