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Abstract 

The purpose of the research work is to calculate the scattering parameters for two-nucleon system 

with Yukawa potential. We have calculated the scattering phase shift, effective range and 

scattering length. To calculate the phase shift, the transition matrix (T-matrix) is formulated from 

Lippmann-Schwinger equation for two-body scattering state. The Lippmann-Schwinger equation 

is the Schrödinger equation with boundary condition. The numerical values of T-matrix are 

obtained by using Gauss elimination Method with FORTRAN code. And then, the effective range 

and scattering length are calculated by using the phase shift. 
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Introduction 

Nucleon-nucleon interactions are studied based on scattering experiments. The interaction 

between two nucleons is basis for all of nuclear physics. The scattering is related to the behavior 

of the interaction. The simplest bound system in nature is the deuteron which consists of a 

neutron and a proton. A phenomenological nucleon-nucleon interaction based on the meson 

exchanges. The meson exchange idea introduced by Yukawa in 1934 is a good starting point to 

examine nucleon-nucleon interaction. In the Yukawa picture, the interaction between two 

nucleons is mediated by the exchange of mesons. 

Protons and neutrons are lowest energy bound states of quarks and gluons. When we put 

two or more of these particles together, they interact, scatter and sometimes form bound states 

due to the strong interaction. On first tries to extract the nucleon-nucleon interaction from the 

nucleon-nucleon scattering data. For neutron scattering, there are two major sources for incident 

beam. At low energies, neutrons from nuclear reactors may be used. At higher energies, one can 

make use of neutrons produced a beam of protons. However, both the intensity and the energy 

resolution of neutron beam obtained in these ways are much more limited than those for proton 

beams. As a result neutron scattering is a more difficult experiment than those with protons. The 

information obtained from proton-neutron (np) and proton-proton(pp) scattering may not be any 

different from that in np- and pp-scattering is whether the neutron or the proton is the target. If 

nuclear force is charge independent, the results of pp- and nn-scattering can only be different by 

the contribution made by coulomb interaction. A comparison of pp- and nn-scattering results is 

the charge independence of nuclear interaction. 

Phase shift, Scattering length and effective range are scattering parameters. These 

parameters provide a useful way to parameterize information on low-energy nucleon-nucleon 

scattering. These parameters may be related to observations other than NN-scattering, such as 

deuteron binding energy. In addition, very accurate results can be obtained for the np- system by 

scattering slow neutrons off protons in hydrogen atoms. For these reasons, a great deal of 

attention is devoted to the measurement and understanding of these parameters. Any potential 
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shape can be used to obtain these parameters by a proper choice of the range and depth of the 

well. We can relate these parameters to the properties of ground state of the deuteron. 

In our calculation, the Yukawa type Malfliet-Tjon potential is used. The Malfliet-Tjon 

potential is the Yukawa type potential including also „soft core‟ repulsion. This potential is a 

central potential independent of spin and isospin. 

 The nucleon-nucleon interaction in the 0

1S  channel is a superposition of two Yukawa 

potential one of which is repulsive, i.e. 
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The potential constants were determined from a fit to the low energy parameters and the 

phase shifts up to 300MeV lab energy. 

Using proton-proton scattering data and bound state of the neutron system, potential 

representing the interaction between two nucleons can be constructed. Although they ignore the 

important spin degree of freedom, the Malfliet-Tjon potentials are very useful in determining 

qualitative feature of nucleon system and providing test case. 

Table  1 The various parameters sets of the Malfliet-Tjon potentials  
 

Potential 

no. 

vA  

   

uA 

fm 

vR 

   

uR 

fm 

I (
1
S0) 2.6 1.55 7 .39 3.11 

II (
1
S0) 0.266 0.809 0 0 

III (
3
S1) 3.22 1.55 7.39 3.11 

IV (
3
S1) 0.330 0.633 0 0 

 

The Lippmann-Schwinger Equation 

 The Lippmann-Schwinger equation is actually Schrödinger equation plus boundary 

condition independent of particular representation. The Lippmann-Schwinger equation is an 

exact equation for the scattering problem that can be expressed in momentum space as well as in 

configuration space. The Lippmann-Schwinger equation is the following equation: 
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Now by operating with V from the left hand side of equation (1) 
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We define the transition operator  ̂ with respect to the plane wave state. 

TV ˆˆ )(       (3) 
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 is the plane wave. The operator  ̂ is defined so that the effect of   ̂ on    is the same as the 

effect of  ̂ on . 

And then equation (2) is become the following equation: 

   T
iHE

VVT ˆ
ˆ

1ˆˆˆ

0     

 (4) 

An operator equation for   ̂ is  
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Then we project it onto the momentum space as follows: 
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By inserting the completeness relation in the second term of the above equation, the following 

equation is obtained. 
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Here E is the incident energy and it has 
m

p

2

2
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Using the principal value theorem )(
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lim 0 xi
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p

ix
i , the Eq.(10) becomes 
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The integral limit is zero to infinity but we determine pmax is enough for that limit and the 

saturation for 0pp , the eq.(11) becomes 
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This equation can be solved numerically by using the FORTRAN code. 

Numerical Calculation 

To obtain the numerical value of the T-matrix, we transform the Eq.(12) into the discrete form. 

By using the Gauss numerical integration method, these equations can be written as 
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Where Wj and pj  are the Gauss weight and Gauss point. The following notations are used to 

simplify the equation 
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For FORTRAN CODE, the final equation is 

   0

2 ~~
TCTVpWVT jjij

N

j

jjii        (14)   

Here the index i run from 0 to N and j runs from 1 to N. in general, the above equation can be 

written in the matrix form   
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The above matrix is denoted as 

  i

j

jij BTA
1

       

The Eq(15) is a set of „N‟ equations in „N‟ unknowns. We can solve this equation by using Gauss 

Elimination Method. And then we obtain the T-matrix elements. 

Using T-matrix, we calculated the phase shift. The relation between T-matrix and phase shift is 

given the following equation: 

   S = 1 – i m π p0 T(p0,p0) 

The phase shift     
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Then the effective range and scattering length are calculated. We have the equation 
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where  is the phase shift of a function of energy E. 

   mEk 2   

The effective range „r‟ and the scattering length ‟a‟ do not depend on energy E. 

For the two values of input energy, the following two equations is obtained 
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These equations can be written as the following matrix forms: 
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 This equation is two unknown two equations. Two unknowns „a‟ and „r‟ can be calculated 

by using Gauss elimination method. 
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Results and Discussions 

 T-matrix elements are obtained by solving the Lippmann Schwinger equation with Gauss 

elimination method. And then, the phase shifts for various incident energies are calculated by 

sing the T-matrix elements. We have calculated the phase shifts for the singlet (
1
S0) and the 

triplet (
3
S1) potentials of Yukawa type which are given in table (1). The potential I and II are the 

singlet (
1
S0) potentials and the potential III and IV are triplet (

3
S1) potentials. The results of the 

1
S0 phase shift for potential I and potential II is given in table (2) and figure (1). The results of 

the 
3
S1 phase shift for potential III and potential IV is given in table (3) and figure (2). We 

compare the calculated results and experimental results. 

Our calculated values of scattering length for 
1
S0 potential I and II are -23.78fm and-

23.67fm. Therefore our calculated values are in good agreement with experiment value of -23.75. 

The negative scattering length implies that the system has no bound state. Our calculated results 

of scattering length for 
3
S1 potential III and IV are 5.34fm and 5.50fm. Our calculated values are 

in good agreement with the experimental value of 5.423fm. The positive scattering length implies 

that a bound state exists. The results of effective range for 
1
S0 potential I and II are 2.84fm and 

2.88fm and these results are in good agreement with the experimental value of 2.73fm. Our 

calculated results of   effective range for 
3
S1potential III and IV are 1.87fm and 1.73fm and these 

results are in good agreement with the experimental value of 1.73fm. 

Table 2  Neutron-proton scattering phase shift for singlet state (
1
S0) 

Elab 

(MeV) 

 Phase shift(Deg) 

Exp 

(Deg) 

Potential I 

(Deg) 

Potential II 

(Deg) 

1 62.1 64.65 61.12 

10 60.0 58.41 59.75 

25 50.9 47.04 53.31 

50 40.5 34.96 47.47 

100 26.8 20.35 41.38 

150 16.9 10.90 37.86 

200 8.9 3.90 35.32 

 

 

Figure 1 n-p phase shift for 
1
S0 state 
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Table 3  Neutron-proton scattering phase shifts for triplet (
3
S1 ) state 

Elab 

(MeV) 

Phase shift(Deg) 

Exp; Potential III Potential IV 

24 81.7 79.83 86.03 

48 63.3 61.77 73.25 

96 42.9 43.17 61.74 

144 29.8 32.10 55.57 

208 17.1 21.99 50.35 

 

 

Figure 2  n-p phase shifts for triplet 
3
S1 state 

 

Table 4 The n-p scattering length and effective range for four parameter sets of 

Malfliet-Tjon potential 
 

 

 

 

 

Conclusion 

 The phase shifts for Yukawa type Malfliet-Tjon potential have been calculated. We 

obtained the T-matrix elements by solving the Lippmann-Schwinger equation with Gauss 

Elimination method. The phase shifts for various parameter sets of Malfliet-Tjon potential have 

been calculated. Potential II and IV are purely attractive potentials. The calculated phase shifts of 

Potential II and IV do not agree with the experimental results. Potential I and III are two-range 

potential including attractive and repulsive parts. Therefore, the results of phase shift for 

Potential I and Potential III are in good agreement with experimental results. 
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     1
S0 state 

3
S1 state 

I II Exp:[1] III IV Exp:[1] 

a (fm) -23.78 -23.67 -23.715 5.34 5.50 5.423 

r (fm) 2.84 2.88 2.73 1.87 1.73 1.73 
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