INSECT PESTS AND THEIR PREDATORS ON POMELO PLANT IN HMAWBI TOWNSHIP

Thinzar Oo¹, Pwint Thu Aye¹, Khin Myat Hmwe², Su Su³

Abstract

Insect pests are the major enemies for the agriculture sector. This research was thus conducted at the pomelo private farm of Let Pan Tan Su village located in Hmawbi Township, Yangon Region from November, 2016 to October, 2017. Biweekly sampling was focused on 30 trees in 10 acres. A total of 18 species of insect pests belonging to 17 genera under 13 families of 7 orders and 12 species of the predators belonging to 11 genera under 4 families of 3 orders were recorded on the pomelo plants. The highest pest species composition was found in Pseudoccus citriculus (58738 individuals) while the lowest as Chiridopsis saclaris (22 individuals). The study insect pest was most infested in the month of November. Oecophyllas maradina, was observed as dominant predator species (125196 individuals) while Coecinellas septempunctataas least predator species with only one individual during the study periods. The research could be investigated not only the incident and population of insect pest but also the pest seasonal and peak of outbreak time.

Keywords: Insect pests, predators, population, pomelo plant

Introduction

Insect diversity is the highest in the living world. Most are infected in all plant species, the storage grains and seeds as pest Smithsonian Information, (2016). Major pests are called serious pests of a crop (or crops) in a restricted locality, or are economic pests over a large part of the distributional range of the crop plant. Insect pests can destroy any parts of the plants and fruit loss. Due to their wide spread, frequent occurrence, biological interest, wide range of host plants and other aspects of academic interest, insect species can be recognized as major pests.

¹ Assistant Lecturers, Department of Zoology, University of Yangon.
² Lecturer, Department of Zoology, University of Yangon

^{3.} Professor (Retired), Department of Zoology, University of Yangon.

The farm owners in Southeast Asia lost at least 300 million USD per year due to pests.

According to FAO, (1991) mentioned that this is one of the most important factors of economic aspects owing to fruit loss by insect pests. Predators are carnivores feed only on living prey and some feed on insects. Wise, (1993) also stated that predator are important role in the control of pest ecological balance.

Pomelo is very important plant for economic aspects because of its nutrition value and high demand in the world. In Southeast Asia, pomelo is grown in home gardens, in mixed citrus orchards and in pure pomelo orchards. Aung Soe, (1999) mentioned that 18,211 hectares of pomelo plantation in Myanmar. Hmawbi Township is one of the main agricultural Township in Yangon Region, Myanmar. Due to the high demand of pomelo fruit, most of the orchards farm owners in Hmawbi Township are desired to plant them. Flowering season of pomelo plants is from January to February. Fruiting season takes for five months (March to July), harvest time is October to December and the yield rate is 80-150 fruits per plant.

Casey Ng, (2015) recorded more than 74 insect pest species on pomelo trees. Hence, Insect pests are important for the yield of pomelo fruits. Because of insect pests, pomelo farm owners in Hmawbi Township faced reducing in pomelo yield in every year. Fruit loss is about 100-200 fruits per day. According to interview, about 30,000 fruits were lost in one crop season. Main cause of fruit loss is due to insect pests. Thus, the supply of demand is inadequate. No one had been conducted on the study of insect pests of pomelo plants in Myanmar and also in Hmawbi Township as yet. Thus the present study has been addressed to this issue and conducted at the pomelo private farm in Let Pan Tan Su Village, Hmawbi Township with the following objectives:

- To record the occurrence of insect pest species and their predators
- To evaluate the populations of insect pest and their predators

Materials and Methods

Study area

In Let Pan Tan Su Village, Hmawbi Township between latitude $17^{\circ}12'$ 58" and $17^{\circ}13'$ 4" and longitude $96^{\circ}2'$ 58" and $96^{\circ}3'$ 7" was chosen as the study area.

Study site

Pomelo private farm is Let Pan Tan Su Village was chosen as study site about ten acres. A total of 1200 trees is planted in 6 plots and 20 ft apart the plants in each plot have 17 rows and 15 trees in each row (Figure. 1).

Study design

Research design was targeted to the corner and center of pomelo plots in the farm. Five plants were chosen in each plot (one in each corner and one plant in the center of each plot). A total of 30 plants were studied as sample in study area (Fig. 2).

Study period and Sample collection

The study period lasted from November, 2016 to October, 2017. Biweekly data collection on the pest population was done from 7:00 am to 5:00 pm. The population of infested species on five selected plants was counted and recorded.

Identification

Identification was followed after Bland and Jaques (1978), Davidson and Lyon (1979), Hill (1983) and McGavin, (2000).

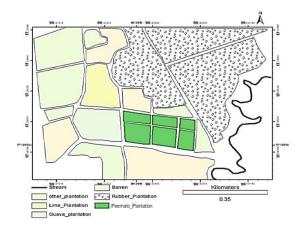


Figure 1. Layout plan of study sites in pomelo orchard farm

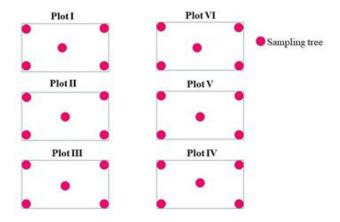


Figure 2. Flow chart of research design

Results

A total of 18 species of insect pests belonging to 17 genera under 13 families of 7 orders was recorded on studied plants. Order wise contribution of the recorded insect pest species were Order Homoptera (5 species, 28%); Lepidoptera and Coleoptera (3 species each, 17%); Hemiptera, Heteroptera and Hymenoptera (2 species each, 11%) and, Diptera with only one species (5%). Of the recorded families, Pseudococcidae was highest species composition (17%, 3 species) (Table 1, Fig. 3, 4 and Plate 1).

With respect to monthly fluctuation in occurrence, insect pest species were more recorded in October (15 species) while less in March (6 species). Among the species, *Aleurocanthus woglumi*, *Coccus hesoerdium* and *Phyllocnistis citerlla* were observed throughout the studied months except November and *Pseudoccus citriculus* was not in September while *Holotrichia serrata* was found only in May and June (Table 2, Fig. 6).

Concerning with infestation rate, the peak infestation rate was observed in November with the population number (31332 individuals) while bottom in April (988 individuals). Regardless of the studied months and plots, the upper most abundance species was *Pseudoccus citriculus* (58738 individuals) while the lowermost as *Chiridosis saclaris* (22 individuals). Moreover, *Holotrichia serrata* had the noticeable number of population (4738 individuals) appeared only in May and June during the study periods.

Comparison among the study plots, Plot I had the highest population (33430 individuals) while the lowest in Plot IV (22001 individuals). *Pseudoccus citriculus* was dominant in Plot I, III, IV and VI with (18981, 6788, 10469 and 7163 individuals), respectively. *Pseudoccus longispinus* was dominant in Plot II and V with (9885 and 8615 individuals), respectively (Table 2, Fig. 5).

Regarding to the predators, 12 species of the predators belonging to 11 genera under 24 families of 3 orders were recorded during the study period (Table 3, Plate 2). Of the recorded orders, Order Hymenoptera represented with 2 predator species, Coleoptera with 4 species and Aranea with 6 species. From the point of families wise, the highest species composition was found in the family Araneidae (42%, 5 predator species) and followed by Coccinellidae (33%, 4 species), Formicidae (17%, 2species) and then Oxyopidae (8%, only one species). The occurrence of highest predator species was found in February (12 species) while lowest in April and May (3 species each). Among the recorded predator species, *Oecophylla maradina* and *Camponotus* species

were found throughout the study periods but *Coecinella septempunctata* was found only in February (Table 3, Plate 2 and Fig. 4).

The predator infestation was peak in May (23395 individuals) while bottom in April (3893 individuals). *Oecophyllas maradina, Camponotus* species and *Eriovixia laglaisei* were regarded as dominant species with (125196, 15352 and 1217 individuals) respectively in all study plots. Only one individual *Coecinella septempunctata* was recorded during the study periods (Table 3, 4, Plate 2).

Discussion

Total record of (18 insect pest species) and 12 predator species in the present study was less than those reported by Casey Ng, (2015) who reported 74 species in SEA (except Myanmar). Thormann *et al*, (2016) mentioned that insect are extremely richness and unexplored species in every country because of difficult in sorting and identifying and; existing of methodological challenge Achieving less recorded pest species may be due to experience, time duration or different environmental condition. Having more experience and longer study time may achieve more species recorded.

In addition, only five species (*P. longispinus*, *P.citriculus*, *C.hesperidum*, *D. citri*, and *B. dorsalis*) among the recorded species were corresponded to the previous research by Mi Zin Mar Khine, (2015). Therefore, a total of thirteen insect pest species was reported as new record for pomelo plant which grown in Myanmar. The first step of Integrated Pest Management (IPM) in controlling a problem, whether it is an insect, disease or weed, is to identify it correctly Barkley, (2011).

According to the guide to crop protection (2016), control pests were achieved by implementing agronomic practices. It will help to manage to reduce certain insect species, as well as the levels of some disease organisms. The regular water supply is important before flowering and until after harvesting of pomelo fruits. Loquias, (2006) also mentioned that regular supply of water is need to sustain new shoot growth and development of

209

flowers and fruits. The present study was noted that lesser insect's population level or extent of crop damage in plot III and IV may be related to delay irrigation and culture practices.

Hill, (1983) and Ahmed *et. al.*, (2014) reported that the list of major pests (including *A. woglumi*, *P. citriculus*, *P. demoleus* and *B. dorsali*) at citrus farms including pomelo in South East Asia and in Bangladesh with their infestation rate and active months which were accorded with the present study.

Thus the present study could be revealed the major pest species of the post-harvest time of pomelo plant in the present study area owing to noticeable population number and highest damage by these mention insect pest species especially in the months of November.

Ghosh, (1940) stated that predator can properly manage the infestation of insect. Spiders are predators of invertebrates, especially insects. They immobilized the prey them with venom inserted through their jaws ('fangs'). Natural predators may also be used in the control the pest. Barkley, (2011) also reviewed that biological controls are natural enemies of pests such as predatory and parasitic insects as well as birds.

The present study was supported above the statements as the predator species of *C. septempunctata* and *O. smaradina* were observed feeding on insect pest species *P. longispinus*, *P. citriculus* and *C. hesoerdium* during the study periods.

Moreover, as for suggestion the weaver ant species, *O. smaradina* can be used as control agent since they were recorded in highest number of population of in study farm throughout the study months.

E
4
♪
ĕ
ᇙ
.5
턞
7
큠.
-
ĕ
ĕ
8
Ď,
=
9
S
.2
2
ŝ
Ħ
ته
_
ᅙ
ŝ
Ĩ.
9
쁑
2
8
ĕ
-
_
퉑
100
\vdash

Total	17938	889	3716	32207	58738	7783	7620	1025	1500	14959	127	358	2258	4738	144	22	510	1158	155489
Plot VI	4653	100	923	4317	7163	1249	1802	191	216	1856	24	43	484	909	14	3	49	47	23610
PlotV	3392	33	544	8615	7576	1385	323	147	247	2168	18	44	679	520	6	2	95	145	25892
PlotIV	646	123	187	1595	10469	1307	1322	185	207	3772	12	9	165	1584	22	1	95	283	22001
PlotIII	1617	39	691	3202	6788	2565	2563	123	258	2993	15	79	133	096	29	4	71	346	22476
PlotII	3422	186	465	9885	1761	801	884	178	357	2316	25	64	552	929	45	12	152	325	28080
Plot I	4208	207	906	4593	18981	476	726	231	215	1854	33	63	295	518	25	0	87	12	33430
Common name	Citrus black fly	Citrus white fly	Striped mealybug	Longtail mealybug	Longtail citrus mealybug	California red scale	Brown soft scale	Rice seed bug	Brown marmorated stink bug	Leafminor	Moth	Citrus butterfly	Fruitfly	White grub	Beetle green	Golden beetle	Gold-dustweevil	Shiny cereal weevil	
Family Species	Aleurocanthus wogluni	Dialeuro descitri	Ferrisi avirgata	Pseudococcus longisp inus	P. citriculus	Aonidiella awantii	Coccus hesperidum	Leptocoris aacuta	Halyomorphahalys	Phyllocnistis citrella	Суапа соссіпва	Papillo demoleus	Bactrocera dorsalis	Holotrichia serrata	Alticaly thri	Chiridopsis saclaris	Hypomeces squamous	Nematocerus spp.	
Family	Aleyrodidae		Pseudococcidae			Diaspididae	Coccidae	Coreidae	Pentatomidae	Phyllocnistidae	Arctiidae	Papilionidae	Tephritidae	Coccinellidae	Chrysomelidae		Curculionidae		
Order	Hemiptera		Homoptera					Heteroptera		Lepidoptera			Diptera	Coleoptera			Нутепорыя		
%	-	2	3	4	5	9	7	°°	6	10	Ξ	12	13	14	15	16	11	18	

Tab	Table 2. Monthly insect pest populations on pomelo plant	sect pe	st popu	lations (on pome	olo plan	_				***************************************			
No.	Species	Nov	Dec	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Total
_	A. weglumi	0	263	436	6986	422	241	3491	1294	199	892	351	604	17938
2	D. citrifolii	0	0	0	0	0	0	265	24	105	85	78	131	889
3	F. virgata	0	0	0	0	0	0	810	908	878	234	131	857	3716
4	P. longispinus	11616	3326	4590	2915	114	21	4953	996	185	0	0	1274	32207
5	P. citriculus	17747	24881	4294	7543	174	77	2556	546	151	37	0	989	58738
9	A. aurantii	0	0	0	0	0	0	12	0	0	2988	2226	2557	7783
7	C. hesoerdium	0	112	402	1716	153	125	2463	1948	236	147	37	281	7620
8	L. acuta	206	117	207	-	0	0	255	123	6	-	0	901	1025
6	H. habss	283	314	251	0	0	_	159	73	64	49	901	200	1500
10	P. citerlla	0	29	164	335	173	563	8335	2645	137	169	1327	995	14959
=	C. coccinea	27	12	45	43	0	0	0	0	0	0	0	0	127
12	P. demoleus	59	30	37	38	0	2	0	1	24	62	82	23	358
13	B. dozsalis	1349	30	0	0	0	0	0	0	0	237	352	290	2258
14	H. servata	0	0	0	0	0	0	3035	1703	0	0	0	0	4738
15	Alticaluthri	0	0	0	0	0	4	96	34	4	0	0	9	144
16	C. saclaris	0	0	0	-	-	0	0	0	s.	0	0	12	22
17	H. squamous	45	9/	34	76	0	6	135	90	22	22	91	75	510
18	Nematocerus spp.	0	0	0	0	0	0	631	326	80	49	72	0	1158
	TOTAL	31332	29190	10460	24734	1037	886	27196	10539	2203	5370	4778	7662	155489
ļ]

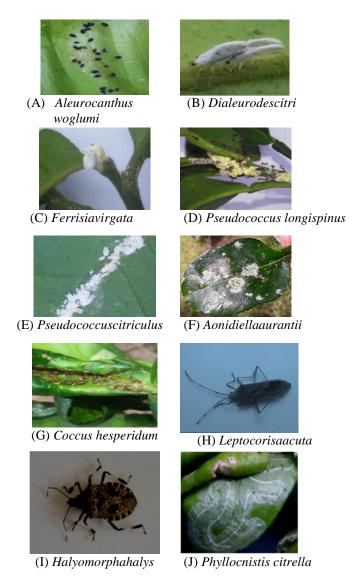


Plate 1. Recorded insect pest species on Pomelo plants

Plate 1. Continued: Recorded insect pest species on Pomelo plants

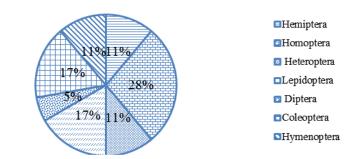


Figure 3. Insect species composition in recorded Order

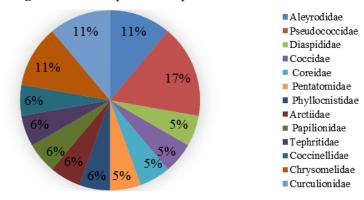
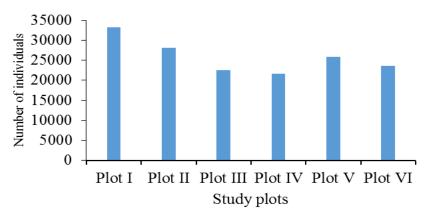



Figure 4. Insect species composition in recorded Families

Figure 5. Populations of insect pest species among study plots during the study period

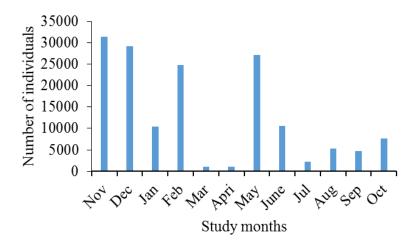


Figure6. Comparison of monthly populations of insect pest in study farm

Plot VI	22626	1331	oo.	2	14	1	12	3	7	335	34	15
Plot V	21531	1934	10	9	1	0	77	14	4	144	39	9
Plot IV	17564	1784	5	3	2	0	71	1	9	203	20	75
Plot III	12673	4290	4	oo .	3	0	4	5	11	357	407	10
Plot II	16725	4398	9	6	6	0	14	10	7	209	16	7
PlotI	34078	1579	27	3	9	0	11	5	7	1101	36	6
Сошшоп паше	Weaver ant	Carpenter ant	Transverse ladybird beetle	Six-spoted ladybird	Twice-stabbed Lady Beetle	Beetle seven spots	Multi-coloured St. Andrew's cross spider	Hasselt's spiny spider	Black and white spiny spider	Laglaise's garden spider	five spot head spider	Black and white spider
Species	Oecophyllas maradina	Canyonotus sp.	Coccinella transversalis	Chilomenessexmaculata	Chilocorous stigma	Coccinella septempunctata	Argiopeversicolour	Gasteracantha hasseltii	G. khuli	Eriovixia laglaisei	Telamoni adimidiata	Ocyopes shweta
Family	Formicidae		Coccinellidae				Araneidae					Oxyopidae
Order	Hymenoptera		Coleoptera				Araneae					
No.	-	2	3	4	5	9	7	oo .	6	10	==	12

┉∤		9	<u> </u>	9	3	\$	· ••• ••••	133	. <u></u>	<u></u>		1117	122	<u>.</u>
	Total	125196	15352			1		13			121	Ξ	12	142302
	Oct	4382	133	0	0	0	0	-	=	5	28	39	6	4608
	Sept	3649	169	0	0	0	0	-	0	0	41	14	19	3893
	Aug	8/99	429	0	0	0	0	125	0	2	22	25	91	7372
	July	6930	468	0	0	0	0	0	0	0	5	6	2	7414
	June	17737	2940	0	0	0	0	1	0	2	1	0	0	20681
	May	21878	1508	0	0	0	0	0	0	0	0	6	0	23395
	April	4542	717	0	0	0	0	0	0	0	0	2	0	5261
	March	4484	1249	0	0	-	0	0	0	0	-	-	0	5736
	Feb	14056	3587	26	3	3	-	5	3	5	1119	18	1	18827
	Jan	14191	2458	5	5	15	0	0	0	0	0	0	0	16674
	Dec	14479	354	16	12	7	0	0	0	0	0	0	0	14868
	Nov	12190	1340	18	11	14	0	0	0	0	0	0	0	13573
	Species	O. smaradina	Camponotus species	C. transversalis	C. sexmaculata	C. stigma	C. septempunctata	A. versicolor	G. hasseltti	G. Khuli	E. Laglaise's	T. dimidiata	Охуорегьтиета	TOTAL
İ	No.	1	2	3	4	S	9	7	∞	6	10	==	12	

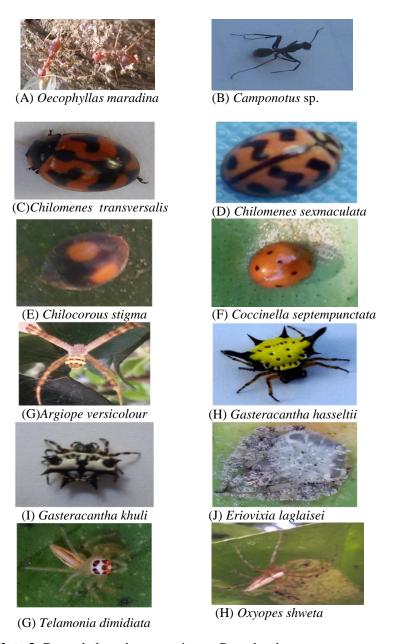


Plate 2. Recorded predator species on Pomelo plants

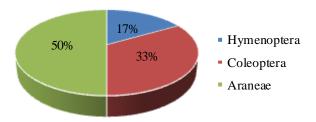


Figure 7. Predator species composition in recorded Orders

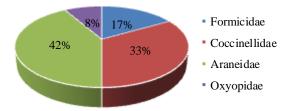


Figure 8. Predator species composition in recorded families

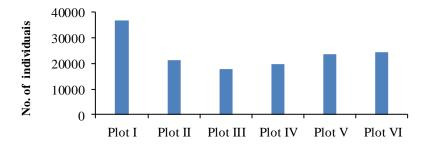


Figure 9. Occurrence of predator species among study plots during the study area

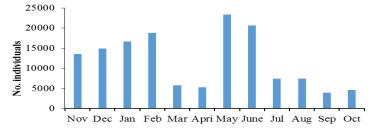


Figure 10. Comparison of monthly occurrence of predator species in study area

Conclusions

The present research was conducted at the pomelo private farm of Let Pan Tan Su Village, Hmawbi Township, Yangon Region to record the occurrence of insect pest species and their predators on pomelo plant. Biweekly data of insect pests and predators were identified and counted the population number to roughly predict when and which insects infected on pomelo plants. A total of 18 insect pest species and 12 predators were recorded. Predation was observed. Pest populations could identify in studied farm at risk from various pests. To carry out management of pest problems on pomelo plants, regular checking is needed on the targeted plants in the orchard for the presence of pests throughout the entire growing season.

Acknowledgements

We would like to greatly indebted to Dr Thida Lay Thwe, Professor/Head, Department of Zoology, University of Yangon for her permission to conduct this study. Our special thanks go to Dr Aye Mi San, Professor, Department of Zoology, University of Yangon for moral support. Heartfelt thanks go to Dr Aye Mya Phyu, lecturer, Department of Zoology, Sittway University for providing the literature. We are also grateful to U Myo Naing, Orchard's owner of pomelo farm, Let Pan Tan Su Village for allowing as do this research in his farm.

References

- Aung Soe, (1999). Scientific cultivation methods for fruit and culinary crops. Planning Division, Myanmar Agriculture Service, Ministry of Agriculture and Irrigation, Yangon.
- Barkley, Y., (2011).Balsam Woolly Adelgid.University of Idaho Extension Forestry Informations Series II, Insects and Diseases No. 17. Forestry Wildlife and Range Experiment Station, Moscow.
- Bland, R.C., Jaques, H.E., (1978). *How to know the insects*, Third edition. The Wm. C. Brown Company, Ohio State University.
- Casey Ng, (2015). Pomelo Citrus maxima the indigenous mega citrus of South EastAsia, *Utar Agriculture Science Journal*. 1(3): 29-34.

- Davidson, R.H., Lyon, W.F, (1979). *Insect pest of farm, Garden and orchard*, Seventh edition. John Wiley and Sons, New York.
- FAO, (1991).Important pests of major crops of Asia and the Pacific.The Asia Pacific Plant Protection Commission.*Technical Document*. Rome.
- Ghosh, C.C., (1940). *Insect pest of Burma*. Superintedent's Government Printing and stationary, Rangoon.
- Hill, D.S., (1983). Agricultural insect pest of the tropics and their control, Second edition. Cambridage University Press, Cambridage.
- Koh, J.K.H., (1991). Spider of the family Araneidae in Singapore mangroves. *Raffles Bulletin of Zoology*. 39(1): 169-182.
- McGavin, G.C., (2000). *Insects, spiders and other terrestrial arthropods*. Dorling Kindersly Ltd., London.
- Smithsonian Information, (2016). Numbers of insects (species and individuals), Information sheet number 18.Available from: buginfo>bugons">http://www.si.edu>buginfo>bugons. Accepted date: 5-12-2016.
- Wise, D.H., (1993). Spider in ecological webs. Journal of Archnology, 23: 48-50.